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Abstract lubrication, is stil a subject which draws intense debate
as to the nature and mechanism of the phenomena. Vari-
ous theories and conditions for cavitation have been put

In this paper, an analogy between the mathematical forward. However, only the collective works ofJakobsson
modeling of transonic potential flow and the flow in a and Floberg (1957) and Olsson (1965), now known as

W cavitating bearing is described. Based on the similarities, JFO theory, have provided insight into the subject, which
characteristics of the cavitated region andjump conditions is both consistent with mass conservation and the physics
across the film reformation and rupture fronts are devel- of the problem. When the boundary conditions developed
oped using the method of weak solutions. The mathemati- in JFO theory are applied to the Reynolds equation, the
cal analogy is extended by utilizing a few computational extent of cavitated regions and the performance of bear-
concepts of transonic flow to numerically model the ings can be predicted more precisely than by any existing
cavitating bearing. Methods of shock fitting and shock method. This theory has yielded results which are in good
capturing are discussed. Various procedures used in tran- agreement with experimental data.
sonic flow computations are adapted to bearing cavitation The subject of gas dynamics gained immense research
applications, for example, type differencing, grid trans- interest around the turn of this century. This effort helped
formation, an approximate factorization technique, and promote thedevdopmentof supersonic aircrafts and large
Newton's iteration method. These concepts have proved thrust rocket nozzles. Application of gas dynamics prin-
to be successful and have vastly improved the efficiency ciples include turbine flows, gas lasers, aerodynamic
of numerical modeling of cavitated bearings, windows, missile aerodynamics, jet engines and the flow

around a body entering the atmosphere (Emanuel, 1986).
Introduction Mach number M, a nondimensional parameter, which is

the ratio of the flow speed to the local speed of sound, is
Cavitation in fluid film bearings, though recognized as the indicative index as to whether the flow is subsonic

early as 1886 when Reynolds introduced the theory of (M < 1), sonic (M = 1), or supersonic (M > 1). It is also a
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measureofthecompressibilityoftheflow.Inaconverging- reformation using shock fitting and shock reformation
diverging duct, the flow can range from subsonic to techniques are discussed. A brief discussion of several
supersonic or the reverse. The converging section is called techniques that are widely used in current transonic flow
a nozzle when the flow is subsonic and is accelerating; it computation is provided. These techniques have already
is called a diffuser when the flow is supersonic and is been suitably modified and incorporated into the analysis
decelerating. The diverging section is called a diffuser of cavitation in bearings.
when the flow is subsonic and is decelerating and is called
a nozzle when the flow is supersonic and is Mathematical Modeling
accelerating.When subsonic and supersonic flow regimes
exist, the flow is called transonic. It is also possible for an Cavitated Bearing
internal flow to be totally subsonic or supersonic through
the nozzle. However, for a transonic flow to exist, a duct The conservation of mass flow, within the clearance
with a throat is essential. between the stationary and moving surfaces of a bearing

Prior to 1965, computational methods were rarely used can be written, by lumping across the film thickness, as
in aerodynamic analysis and importance was placed on
expensive and time consuming wind tunnel experiments. _ph +V-m = )
With the emergence of powerful computers, computa- at
tional aerodynamics has gjeatly auvanced to the extent In the converging wedge of the bearing, the film thickness
that the flow pattern past entire aircraft in different flight diminishes and the pressure is developed. In this region,
regimes can be predicted (Jameson, 1987). Such rapid the mass flux mr can be represented by
growth in computational techniques can be attributed to its
direct application in the design of aircraft and space r = -Iph - 12-p-(2)
vehicles. In addition, there was little recourse aside from 2 12g
expensive experimentation, due to the nonlinear nature of The first term on the right side is the mass flow due to
the governing equations which made them intractable to shear (Couette flow) and the second term is the flow due
analytical modeling. Developments in computational to pressure gradient (Poiscuille flow). Somewhere in the
methods applied in the lubrication area have been diverging wedge of the bearing, the film ruptures and a
comparatively slow to evoive. In fact, to date, the numeri- cavitation region is formed which continues until the film
cal algorithms developed by Elrod (1981) and Kumar and is reformed again. In this cavitated region, the pressure
Booker (1989) are the only effective numerical tools remains essentially constant at the cavitation pressure and
available in the analysis of cavitation in bearings, the mass flows across this region due only to shear along

Transonic flow theory and the theory of lubrication are the film striaticas. In dime kavitatwd region, the film occu-
two distinctly different fields as far as lie physical phe- pies only a portion of the volume, the remaining portion
nomena are concerned. While transonic flow theory deals being filled by air, gas, or vapor. Mass flow in this region
with compressible fluid flow near sonic velocity, classical is given by
lubrication theory is generally concerned with the flow of U
a highly viscous incompressible fluid with a Reynolds me = - pChO (3)
number that is very small. However, due to the existence 2
of subsonic and supersonic flow regimes in a converging- where 0 is the partial film content in the cavitated region.

divergingnozzle and the existenceof full film and cavitated Although the film consists of incompressible fluid, if it is
regions in a bearing with a converging- diverging wedge, assumed that the density of the film varies due to the
there exists a striking resemblance in the mathematical applied pressure, then the variable 0 can be provided with
modeling of these two problems. Such an analogy can a dual interpretation
substantially benefit either field by suitably incorporating
the advancements from one field t.o the other. 0 = P / PC, in the full film region where 0 > 1

In this paper, a mathematical formulation foracavitated Vf / Vt, in the cavitated region where 0 < 1
bearing is derived and compared with that of transonic where Vf and Vt are the volume occupied by the film and
potential flow. An analogy between these formulations the total volume, respectively. In the full film region, the
are developed. The analogy is utilized to employ the variation of density will be governed by the bulk modulus
method of characteristics and the method of weak solu- of the liquid, that is,
tions from transonic flow theory to determine the
characteristics of a cavitated region and the jump condi-
tions that apply across both film reformation and rupture p = _ (4)
front. Tae method oi determining the location of film =  p = (
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Equation (4) also enables one to represent the pressure in a U aE a
terms of the density (or 0), and in essence, acts as the + - - = K Do) + K J (7)
equation of state of the lubricant. 5T 2 ax 5 '. ax az az

Massflowthroughtheentirebearingcanthenbewritten where E = Oh and K= -[3h 3g/121.. Equation (7) is an
as elliptic partial differential equation. The form of equa-

m =II phO - g clch3  ( tion (6) in the cavitated region is given by

12g aE U aE
z --+ - - = 0 (8)

where g is a switch function, which is introduced to at 2 ax
remove the flow due to pressure gradient within the and is a hyperbolic partial differential equation. This may
cavitated region and is defined by be easily demonstrated by differentiating with respect to

t to get-{f1when o> 1

g = when 0<1 2E U a2E a2E u 2 a2 E
+ -- = 0 (9)

Forafinitebearing, the flow due to shear occurs only in the a2  2 x at at2  4 ax2

circumferential direction while the flow due to pressure Equation (9) is acanonical form of the wave equation. The
gradient is present in both the circumferential and axial characteristic form of this equation has two real roots,
directions. Hence,the two dimensional form of equation ±U) +U/2.
can be written as In the full film region, pressure increases to a maximum

value and then gradually decreases until the pressure and
aP0h + a (phU0 pcf3h 3 g 1 its derivative simultaneously vanish, at a location where

at ax- 2 12t a) the film ruptures. The air/gas/vapor strips in the cavitated
region begin with apointed shape. When the film reforms,

a poh 3  a = depending upon the upstream conditions, the reformation
+ - g -' = 0 (6) occurs abruptly. This is because the cavitated region is not

az_ 12g± az) able to signal the impending conditions to the upstream

flow. Figure 1 represents typical profiles of pressure and
Equation (6), which can be used to describe the mass flow fractional film cohtent foi a submerged journal bearing, at
through the entire bearing, was developed by Elrod and a particular axial location. The abrupt changes in 0 and
Adams (1974) and termed a 'universal equation'. In the the pressure gradient at the reformation boundary and the
full film region, equation (6) may be written as gradual changes at the rupture boundary can be clearly
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seen. When the effects of cavitation are not formally It should be noticed that, in a subsonic flow regime
considered, it is usually assumed that the film ruptures (u,v < c),thecoefficicntsofthesecondorder terms will be
at the minimum film thickness and reforms at the maxi- positive and, in a supersonic flow regime (u,v > c), the
mum film thickness. When the cavitation boundaries are coefficients become negative. This variation results in the
determined, it is found that the film extends slightly equation being of the elliptic type with two imaginary
beyond the minimum film thickness into the diverging roots in subsonic regions and of the hyperbolic type with
portion of the bearing and, depending upon the lubricant two real roots in supersonic regions.
supply conditions, the film reformation can occur at or When a subsonic flow slows down, it does so gradually.
around the feed groove. On the other hand, a supersonic flow, which can also

decelerate gradually, normally slows down abruptly.
Transonic Flow Because the fluid in a supersonic flow is unable to signal

the upstream flow of any flow ot geometric changes. This
The flow of a compressible fluid in thermodynamic is a typical characteristic of phenomena governed by

equilibrium is governed by the Navier-Stokes equations. hyperbolic-type equations. The abrupt changes lead to
Foratwo-dimensionalflowtheseequationscanbewritten discontinuities in the flow which are known as shock
in vector form as waves and are a distinct feature of a supersonic flow in

establishing the overall nature of the flow field. Of course,awaf + ag R S (10) an internal flow can also emerge as supersonic without the
at N aY ax aY presence of any shock if the outlet conditions permit.

where w is the vector of dependent variables: density, Since viscous effects are neglected in the potential equa-
Cartesian velocity components, and total energy; f and g tion, for internal flow, sonic conditions occur at the throat
are the convective flux vectors; and R and S are the of the duct. For real fluids, the sonic line extends slightly
viscous flux vectors. Because the full Navier-Stokes downstream of the throat into the diverging portion of the
equations are quite complex, approximations are generally duct.
made. One such simplification consists of assuming no Computational techniques for potential flow have been
viscous dissipation and that flow is irrotational. Conse- extensively developed, since, extremely inexpensive
quently, equation (10) can be written in a quasi-linear computation is achieved with this formulation. Moreover,
form in terms of the velocity potential *. shock capturing and convergence acceleration techniques

U u2uv ( I ,2 developed for potential flow have been found to be trans-

1 - - 2'Oxy + 1 - 0xy = 0 (11) ferable to more complex models using Eulcr equations.
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Figure 2.-Transonic flow and cavitated bearing.
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Analogy Having pointed out the basic analogy between the two
models, extension of method of characteristics to deter-

The similarities between internal transonic flow and mine the path of the disturbances in the cavitated region
cavitated bearing modeling are evident from the previous and the method of weak solutions to determine the jump

two sections. Figure 2 illustrates these similarities. Both conditions across the discontinuities can be developed.

phenomena are governed by similar mathematical formu- Also, determination of the location of film reformation

lations in the different regions and both have an embedded using shock fitting and shock capturing methods will be

hyperbolic region within the elliptic region. The subsonic discussed. Since, our intention is to develop corresond-
portion of the flow (M < 1) is analogous to the full film ing expressions for a cavitated bearing based on the

region (0 > 1). The sonic line (M = 1) is analogous to film analogy, the development details for transonic flow are

rupture (0 = 1). The supersonic portion of the flow (M > 1) not presented in detail, here. Interested readers are refered

is analogous to the full film region (0 < 1). Also, a shock to, for example, Anderson et al. (1984).

and film reformation have similar characteristics. It should
be recognized that the Mach number and the inverse of Method of Characteristics

fractional film content have similarities. The sonic line/
the film rupture locations are strongly influenced by the Hyperbolic equations have certain lines (or surfaces)

geometry of the flow, while the shock wave/film reforma- which indicate the zones of influence and zones of

tion locations are due to the upstream conditions. The flow dependence. The information about the flow is signalled

can also be fully elliptic or hyperbolic in both cases, along these lines which are called characteristics. This

although a completely cavitated bearing has no physical property is used to determine the value of the variable at

significance. Similar to compressible flows involving a particular location in a hyperbolic region from the

shocks, determination of the film reformation boundary is known value of the variable at a downstream location.

a difficult task. This method of solving hyperbolic equations is the Method

Although, it is seen that transonic flow and flow in a of Characteristics (MOC).

cavitated bearing have similarities, it should also be noted
that they also differ in several respects. The essential Supersonic flow.- Assuming the free stream is aligned
differences between these two models are the following: with the x axis, equation (11) can be written as

(1) In transonic flow, the type of the equation is changed 2

due to the change in the sign of the coefficient of the (I MOOJ xx+ Oyy=0 (12)

second order terms; in the case of a cavitated bearing, the
second order terms are totally lost in the hyperbolic region where M_* is the freestream Mach number. In order to

resulting in the reduction of the order of the governing determine the characteristic direction, equation (12) is

equation. This sometimes causes oscillations at the written in terms of the Cartesian velocity components

boundary locations, along an arbitrary smooth curve C, and the determinant of

(2) The entire flow is compressible in a transonic flow; the coefficients is set to zero along the curve. This will

but, in a cavitated bearing, the full film region flow result in the differential equations for the characteristics.

although really incompressible is taken to be compress- For this case,

ible and the cavitated region flow is of the compressible
type. d 1

(3) The unknowns in an irrotational transonic flow are dx B
density and the potential function which are dependent on (13)
each other. On the other hand, for a cavitated bearing the B2 = (M 2 -1)

only unknown is density (or 0).
(4) Flow in both Cartesian directions can occur in

transonic flow, although the resultant velocity can be For a constant B, the equations describing the character-
madetoalign withoneof thecoordinate axes byJameson's istics are obtained by integrating equation (13). This
rotated difference scheme (1974). In bearings, generally results in the following form:
the only motion is a direct result of the journal rotation and x-B
the velocity vector is normally taken to coincide with a = x - By
coordinate axis.B (14)

7I x +By
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where t and il are coordinates along the characteristic This eliminates the need for the solution to be differen-
line. tiable across the discontinuity. The mathematic'al theory

of weak solutions for hyperbolic equations is a relatively
Cavitated region. - Within the cavitated region, the recent development and may be utilized to determine the

governing hyperbolic equation is written as jump conditions across a discontinuity in a flow.

+ U A = 0 (15) Transonic flow. - Although the steady state formula-
?t 2 N tions exhibit elliptic and hyperbolic type equations at

Along a curve x = x(t) in the x - t plane, E = E(x). For a different parts of the flow field, addition of an unsteady
particular curve x = xc(t), let dE = 0. term results in hyperbolic type of equation. Consider a

one-dimensional, scalar, nonlinear, hyperbolic partial
Thus, differential equation

aE Ed au 3F
dE = -- dt + =dx 0 (16) au + a = 0 (20)

Using equation (15), results in where u and F(u) are unknown variables. This can be
U aE dt +aE d E U )dt=0 (17) rewritten as

2ax ax ax at 2 u = 0 (21)

Therefore, at

where A = A(u) = dF/du is called the Jacobian. Now, if
.U w(x,t) is an arbitrary test function which is continuous and

at 2 has a continuous first derivative but vanishes on the
(18) boundary and outside of an arbitrary domain D in the (x,t)

aE 0 plane, then

+ - jw(x,t)dxdt = 0 (22)
The solution to the first of equation (18) determines the Tt* aX
equation of the characteristics and the second one reveals When both u and F are continuous and have continuous
the parameter that is constant along the characteristics, first derivatives, it can be shown that
They are

a Uf fD(uw + Fwx)dxdt = 0 (23)

2 (19) Functions u(x,t) which satisfy equation (23) for all test
functions w are calied weak solutions of equation (21). If

E = Oh =constant thedomain D contains a movingcurve T (x,t), across which
u is discontinuous as shown in figure 3, equation (23) may

Since h is known, the value of 0 at any point in the be integrated by parts, utilizing equation (22), to get
cavitated region can be obtained from a point with a
known value of 0 by tracing backwards along the char- J_([u]cos a, + [F]cos C.2 )ds = 0 (24)
acteristic line. Olsson (1965) discussed this characteristics
approach in his treatise on dynamically loaded bearings, where [ I denotes a jump across the discontinuity and

cos (t1 and cos .2 are the direction cosines normal to the
Method of Weak Solutions discontinuity T (x,t). Since the integrand must vanish for

all w, the condition for u to be a weak solution of
Agenuine solution of a hyperbolic differential equation equation (21) will therefore be

is one in which the dependent variable is continuous but
discontinuities in its derivatives may occur. Alternately, a [ulcos a, + [Ficos a 2 = 0 (25)
weak solution is genuine except along a surface across
which the dependent variable is discontinuous. Only the Equation (25) determines the jump in the value of u
scalar or vector form of first order and hyperbolic second across the discontinuity. This analysis is also valid for a
order partial differential equations possess weak solu- system of equations in which case, u and F are vectors.
tions. Since the dependent variable is not continuous The jump conditions,
across the discontinuity, an integral formulation is used.

6
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Figure 3.-An arbitrary domain with a discontinuity.

dx
[u]- = [F] (26) where A=A(E) =dm/dE.Toproceed in thesamemanner

dt as that used for the transonic flow illustration, it can be

where dx/dt is the velocity of the discontiuity, are shown that for E to be a weak solution of equation (28),
popularly known as the Rankine-Hugoniot equations. For the jump condition to be satisfied at any discontinuity is
example, if u and F are vectors defined as

F ]T [El cos cxl + [m] cos a2 = 0 (30)

U = p,pupe + p--[At any time t1, the velocity of propagation of the discon-
L 2tinuity is determined by the tangent of the curve as shown

F 2e+p2in figure 4. The direction cosines are
(pupu + 2 4) + dt

1 dx
then the Rankine-Hugoniot equations can be written as cos a1 = 1 and cos X2 =d

t ) 2i dt )2
Ud~p]l [pu]l( + ---2 1 +-i-l

dP] = k. dx t=t1  dx t=t1
Ud[PU] = [pu2 + p] therefore,

U1pe + pu /21 =u(pe + (pu2/2) + COa, dx (31)

where Ud is the velocity of discontinuity and e is the COS a2 dt

internal energy. The first two equations are called Hence, equation (30) can be written in terms of the
mechanical jump conditions. primitive variables as

Cavitated bearing. - Consider the one-dimensional [(Oh)L- (Oh)R] ! - {U[(Oh)L- (0h)R]
version of equation (6), which can be written as dt 2  LL

aE am (2)3 - 1 1 hg()00" - h3  0) = 0 (32)If x -=o (28) hzL g(0) L hgo)L
at ax12g k ax ) ax/RJ

where m is the mass flux as defined by equation (5).
Equation (28) can be written in a form similar to that of where L and R are theconditionsat the leftandrightsides
equation (21), that is, of the discontinuity, respectively. In other words,

aE E =[h]- = [m] (33)
AE(29) dt

at Ax is an equivalent Rankine-Hugoniot equation.

7
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First consider the discontinuity due to film reformation. (ii) dx/ dt < U / 2
If it is assumed that the film thickness variation across the
discontinuity is negligible and that O = 1 since full film Now, the left side of equation (36) is also less than or
is formed at the right sidc of the discontinuity, equa- equal to zero. Hence, qL cannot be uniquely determined
tion (32) for these conditions can be written as from equation (36); it must be obtained using the charac-

_A_[ _ )} teristics. Equation (36) is treated as a differential equation
(L - l)x . (OL -1) - - ho = 0 (34) of the following form to determine the veltcity of the

dt 12 12P L "' JRJ front:
If the reformation front is not moving with respect to time dx U a3 1 -( h2
(analogous to a stationary shock), then the conditions for - = E - _h 2I (37)
film reformation will be dt 2 12 O (1-OL) aX)R

1_U Although in transonic flow, the sonic line is not treated
U L 1)1 (35) as a discontinuity; in the case of a dynamically loaded,

2,12g M R] cavitated bearing, there could be a discontinuity of 0 at
the film rupture, when dx/dt> U/2 and there will beajump

Since (aO/ax) 2! 0, obviously, 0 L < 1. in its gradient. The jump conditions for this case can be
developed in the same manner as previously described.

On the other hand, if the reformation front is in The resulting expressions will be
motion, equation (34) can be written as follows (i) dx/dt ! U/2 (N/aX)L 0 and 0. - 1

() d0/dt 1) = - L h2 /)) (36) 0d U 1 2

12g X (ii) dx/dt > U/2 t - (38)
Since (a0/ax) >_ 0, the right side of equation (36) is less 212 (e, 1)
than or equal to zero. Also, since OL<l, there can be two These jump conditions are exactly the same as those
conditions determined by Olsson (1965). However, in that reference

(i) dx / dt 2- U / 2 the conditions were derived using a mass balance across a
fluid volume containing the discontinuity.

For this condition, the left side of equation (36) is greater
than or equal to zero. Hence, the only condition that will Computational Treatment of Discontinuity
satisfy the equality is that both sides must be zero, that is,
( / ax)R = 0 and 0 L = 1. This is the classical Reynolds Transonic flow. - The numerical computation of
boundary condition which is generally applied to deter- supersonic flow is complicated due to the presence of
mine film rupture. shock waves, across which the dependent variables and

8



their derivatives may be discontinuous. Two types of boundary is more difficult than determining the film
numerical techniques have been developed to analyze rupture boundary due to sudden changes in the flow
such flow fields and are known as shock fitting and shock variables across the front.
capturing tectniques. If the initial location and slope of the boundaries are not

known, they can be determined by employing a trial and
Shock fitting technique. - This technique attempts to error method (the discontinuity fitting method). The loca-

locate any discontinuities and treats them as boundaries tion of the boundaries can be assumed and the flow field
between the regions of the flow field where regular solu- on either side of the discontinuity can be determined. The
tionsareapplicable. Shock fitting isachievedby satisfying equivalent Rankine-Hugoniot equation can then be ap-
the Rankine-Hugoniot equations across the discontinuities plied across the boundary to verify the assumption. If the
while simultaneously ensuring that the solution on the initial location and slope are known, then the governing
downstream side of any shock is compatible with the rest equations coupled with the equivalent Rankine-Hugoniot
of the flow field. The movement of the shock wave is equation can be solved to determine the new velocity and
obtained as a part of the solution. The flow field down- the new locations of the discontinuities.
stream of each shock can be determined from freestream The algorithm introduced by Elrod (1981) is essentially
conditions. If the upstream conditions, initial shock slope a discontinuity capturing technique. By combining
and velocity are known, the shock acceleration and post the governing equations for the full film and cavitated
shockpressurecanbedeterminedbycombiningRankine- regions and conserving mass flow through the entire
Hugoniot equations with the compatible equation. This bearing, the 'universal equation' is cast intoa conservation-
technique is most convenient for governing equations law form. Hence, the discontinuities can be predicted as a
written in nonconservative form. part of the solution. This method is simple to implement

Several approaches have been devised to fit shocks and does not require any knowledge about the location of
(Moretti, 1974). The flow field is either partitioned by the discontinuities. The boundaries are predicted very
aligning any shock waves with grid lines or the effectively.
discontinuities are treated explicitly, but not as bound-
aries, in the computation.

Concepts from Transonic Flow
Shock capturing technique. - Unlike the shock fitting Con p f TransonicaFlow

technique, with this method, the discontinuities are pre- mputation
dicted as a part of the solution without the requirement of
any special treatment. By casting Euler equations in The authors have utilized a few transonic flow compu-
conservation-law form, the weak solutions and jump tational concepts in theanalysisofcavitatedbearings.The
conditions are built in. The conservative form of govern- following is a brief discussion of this work.
ing equations and the discretization automatically allow
prediction of the shock wave speed and the strength Computational Algorithm
(Lax, 1954).

Because of the simplicity in approach, this technique is When the potential flow equation was used in transonic
most popular in the computation of flows with shocks. flow computation, difficulty was encountered due to the
This technique also has several variants which include reversal of the velocity vector in the supersonic flow
flux splitting and split coefficient matrix methods. Shock regime. Murman and Cole (1971), in a landmark paper,
waves predicted with this technique can be smeared over demonstrated a simple way to obtain a meaningful solu-
several grid spaces and the application of surface bound- tion by proposing the use of central differencing in the
ary conditions can be difficult. Due to the wavelike nature subsonic region (elliptic) and one sided upwind
of hyperbolic equations, boundary errors are propagated differencing in thesupersonic region (hyperbolic). Jameson
into the flow field which results in instability in the (1975) created a type differencing scheme by introducing
ce:nputation. In general, shock capturing techniques are an artificial viscosity term into the governing equation.
applied to predict internal shocks while boundary shocks This enables automatic switching of the form of
are fitted. differencing as required within different regions of the

flow. Also, with the explicit addition of an artificial
Cavitatedbearing. - Similar to the previously described viscosity term, the conservation form of the equation was

approaches for transonic flow, discontinuity fitting and preserved.
capturing techniques can be applied to problems with In the analysis of cavitation in bearings, Elrod (1981)
cavitating regions. Determining the film reformation modified the originally proposed algorithm by Elrod and
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Adams (1974), by incorporating the idea of changing the spacing does not necessarily provide any significant
form of differencing in the full film and cavitated regions. improvement in the accuracy. With a grid adaption tech-
However, this effect was achieved by 'trial and error' and nique all these effects can be achieved by moving the grid
the algorithm was empirically developed. A type points and selectively loca. ig them in such a way that
differencing scheme was developed by Vijayaraghavan accurate solutions can be obtained with fewer grid points.
and Keith (1989), by introducing an artificial viscosity The concept of gild generation/transformation and grid
term (much like Jameson's) into the governing equation adaption techniques have been incorporated into the
which in turn permitted the algorithm to be mathemati- modified cavitation algorithm by Vijayaraghavan and
cally derived. In addition, with this modification, the Keith (1990(a)).
discretization was also performed in conservative form. The grid adaption procedure can be tailored to the
The predictions using this modified algorithm were found problem being solved. However, the procedure envisaged
to compare well with the predictions using the Elroo was to perform initial computtions which locate the film
algorithm and with experimental data. Hence, the modi- ruptureand reformation fronts, todistributeclosely spaced
fied cavitation algorithm, with this firmerbase, was thought grid are-oid them, and then to rearrange the grid in the full
to offer greater potential for further improvement, film region according to the pressure gradient. In the case

of a mis&ligned journal, when the degree of isalignment
Grid Control is large, grid adaption in the axial direction is applied to

cluster the grid around the maximum pressure location
Numerical grid generation is a fairly comm jn tool to (Vijayaraghavan and Keith, 1990(b)). By aligning the grid

model arbitrarily shaped regions in computational fluid with discontinuiti_s, the flow field is divided into zones of
dynamics. This is basically a procedure to distribute ini an full film and cavitated regions. This enables the jump
orderly manner the grid points in the physical field in such conditions to be applied effectively. In addition, in the
a way that efficient communication between the points case of a two-dimensional time asymptotic solution, by
and all the physical phenomena on the entire continuous aligning the discontinuity along one coordinate direction,
field is represented with sufficient accuracy (Thompson, according to the equivalent Rankine-Hugoniot equation,
1984). Also, the region in the immediate vicinity of solid the mass flow along the other coordinate direction is
surfaces are dominant in determining the character of the continuous across the discontinuity. This method of grid
flow due the large gradients prevailing in this region. adaption combines features of both shock fitting and
Accurate prediction of flow variables in this region is shock capturing techniques.
important since the fiaal values of the variables strongly The predicted performance of the bearings using the
depends on this boundary prediction. When such high adaptive grid and conventional orthogonal grid arrange-
gradient regions are not known J priori, a dynamically ments were found to be comparable. The results obtained
adaptive grid system can be an effective tool. This is an thus far demonstrate the usefulness of these techniques in
active area in grid generation research. By dynamically the analysis of Iv..ring problems. The transformation of
readjusting the grid distribution as the solution proceeds, the governing equ.ition and numerical differencing in a
high resolution solutions can be obtained with fewer grid nonorthogonal coordinate svstem could be confidently
points. applied, primarily due to the mathematical base provided

In the case of a cavitated bearing, film rupture and in the modified algorithm.
reformation locations are not known dpriori. Also, accurate
prediction of the pressure distribution is the primary Solution Procedurt
requirement in the full film region, since, all the perform-
ance parameters depend upon the pressure profile. Hence, In the case of transonic flow, for steady problems, the
closely placed grid points around the cavitation bound- converged solution obtained by using relaxation methods
aries and more grid points in the high pressure gradient generally requires a very large number of iterations due to
regions should lead to a more accurate prediction of the the slow convergence rate. The two most effective solu-
pressure profile. In the case of a bearing with a misaligned tion acceleration techniques for rapid convergence in the
journal, the maximum pressure location in the axial direc- transonic flow computations are approximate factcriza-
tion is shifted tc, wards the edge of the bearing and to tion of the difference operators and the use of multiple
correctly predict the pressure distribution in this region, grids (Jameson,1987). For genuine unsteady transonic
closely spaced grid points are required. With a uniformly flow problems, Newton iteration techniques can beapplied
fine grid arrangement, this will result in a large number of to the governing equation, at every time step, to obtain
grid points located within regions where such a small grid time accurate solutions (Shankar et al, 1985).
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In the analysis of cavitated bearings, relaxaion meth- Elrod, H.G., and Adams, M.L., 1974, "A Corputer Pro-
ods are found to also require a large number of iterations gram for Cavitation and Starvation Problems,"
to obtain a converged steady state solution. Woods and Cavitation and Related Phenomena in Lubrication,
Brewe (1989), in the analysis of a dynamically loaded, D. Dowson, M. Godet, and C.M. Taylor, eds.,
submergedjournal bearing, incorporated a multigrid tech- Mechanical Engineering Publications, ," ew York,
nique into the Elrod algorithm and obtained considerable pp. 37-41.
savings of computer time. I- an unsteady analysis of Emanuel G., 1986, Gas dynamics: Theory and Applica-
cavitated bearings, particularly aynamically loaded bear- lions, AIAA Education Series, AIAA New York.
ings, time accurate solutions are very important. In such Jakobsson, B., and Floberg, L., 1957, "The Finite Journal
cases, the accuracy of the solution can be improved by Bearing, Considering Vaporization,' Transactions of
adding a Newton iteration technique. The Newton itera- Chalmers Univer-ity of Technology, Guthenberg,
tion scheme and approximate factorization techniques Sweden, No. 190.
were developed by Vijayaraghavan and Keith (1990(c)) Jameson, A., 1987 "Success and Challenges in Computa-
for the modified algorithm. The approximate factorization tional Aerodynamics," 8th Computational Fluid
technique was found to be robust and efficient. The unique Dynamics Conference, AIAA, New York, pp. 1-35.
advantage of these techniques is thatw.::i the same unsteady Jameson, A., 1974, "Iterative Solution of Transonic Flows
formulation, both time accurate unsteady results and fast Over Airfoils and Wings, Including Flows at Mach 1,"
convergent asymptotic steady state solutions can be Communications on Pure ondAppliedMathematics,
obtained in less computer time than by using a steady state Vol. 27, No. 3, pp. 283-309.
for ulation. Jameson, A., 1975 "Transonic Potential Flow Calcula-

tions using Conservation Form," Proceedings of 2nd
Conclusion Compatational Fluid Dynamics Conference, AIAA,

New York, pp. 148-161.
Recognition of the mathematical similarities between Kumar, A., and Booker, J.F., 1989, "A Finite Element

internal transonic flow and cavitated bearing flow is an Cavitation Algorithm," ASME Paper 89-Trib-59.
important and useful concept. To the best of authors' Lax, P.D., 1954, "Weak Solutions of Nonlinear Hyper-
knowledge, such similarities have not been pointed out bolic equations and Their Numerical Computation,"
before. The analogy has been exploited to determine the Communications on Pure and Applied Mat'-ematics,
characteristics within the cavitated region and the jump Vol. 7, No. 1, pp. 159-193.
conditions aci-oss any discontinuity in the flow field. By Moretti, G., 1974, "On the Matter of Shock Fitting,"
virtue of similarities between the two flows, advanced Proceedings of the Fourth International Conference
concepts of transonic flow computations can be incorpo- on Numerical Methods in Fluid Dynamics, Lecture
rated into numerical predictions of cavitation in bearings. Notes in Physics, Vol. 35, R.D. Richtmyer, ed., Springer-
Determination of the reformati )n boundary using both Verlag, New York, pp. 287-292.
shock fitting and shock capturing methods are discussed. Murman, E.M., and Cole, J.D., 1971, "Calculation of
With the conservative formulation of the governing 'uni- Plane Steady Transonic Flows," AIAA Journal, Vol. 9,
versal equation', the shock capturing method is very pp. 114-121.
effective and simple to implement. The concepts of tran- Olsson, K.O., 1965, "Cavitation in Dynamically Loaded
sonic flow computation have been developcd and Bearings," Transactions of Chalmers University of
successfully incorporated in three important areas, namely, Technology, Guthenberg, Sweden, No. 308.
algorithm development, grid arrangement and control, Shankar, V., Ide, H., Gorski, J., and Osher, S., 1985, "A
and efficient solution computation. The results obtained Fast Time-Accurate Unsteady Full Poteiitial Scheme,"
are encouraging and it is believed that many more such AIAA Journal, Vol. 25, No. 2, pp. 230-238.
extensions may be possible which will result in improved Thompson, J.F., 1984, "Grid Generation Techniques in
numerical prediction of cavitatic . in bearings. Computational Fluid Dynamics," AIAA Journal,

Vol. 22, No. 11, pp. 1505-1523.
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